Synthèse de nanoparticules par ablation laser : principes – exemples – applications

Frédéric Dumas-Bouchiat^{1,2,3}

Corinne Champeaux¹, Alain Catherinot¹, Nora M. Dempsey^{2,3}, Dominique Givord^{2,3}

¹Univ Limoges, CNRS, SPCTS UMR 7315, Ctr Europeen Ceram, F-87068 Limoges, France ²Univ. Grenoble Alpes, Inst. Neel, F-38042 Grenoble , France ³CNRS, Inst NEEL, UPR2940 F-38042 Grenoble, France

université ouverte source de réussites

^{ne} Journées – Réseau Plasmas Froids – La Rochelle – 17-20 octobre 2016

13è

Introduction to nanoparticles

Properties versus scales

Some numbers

Hyp: spherical NP constituted by n atoms r_s Wigner-Seitz atomic radius

$$R = r_s \cdot n^{(1/3)}$$

Diameters \checkmark 1 nm \approx 45 atoms \checkmark 3 nm \approx 1 272 atoms \checkmark 5 nm \approx 5 844 atoms \checkmark 10 nm \approx 43 249 atoms

Homogeneus nucleation; vapor phase

gas

т

♥ surpersonic beam specific process

Laser vaporisation sources: principle

History – Smalley source

Science des Procédés Céramiques et de Traitements de Surface

S

³H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, "C60: Buckminsterfullerene", Nature 318 (1985)

Cluster: Magic number

Molecular dynamics simulation, growth process of isolated Co clusters in gas phase

Principle:

Cluster Beam Generator (CBG); Laser Vaporisation Sources (LVS); Free Cluster Generator (FCG)

Principle : of Milani-De Heer³

Journées – Réseau Plasmas Froids – La Rochelle – 17-20 octobre 2016

NP Beam Generator (home made)

Limoges laser vaporisation source

Smalley's childs

Science des Procédés Céramiques et de Traitements de Surface

S

Low Energy Cluster Beam Deposition (LECBD

Modelling from Haberland et al. Mo NPs stacks on Mo substrate¹

Approximation, overestimated cluster velocity : NP velocity $V_{max} \approx gas$ velocity $V_{échappement}$ (sound velocity v_{∞}) Cobalt NP : Kinetic-E $\approx 0.7 \text{ eV/at}$ Cohesion-E (bulk) $\approx 4.5 \text{ eV/at}$ $\Rightarrow E_{cinétique} << E_{cohésion}$ $\Rightarrow E_{cinétique} << E_{cohésion}$ $\Rightarrow E_{cinétique} << E_{cohésion}$ $\Rightarrow E_{cohésion}$

²Dumas-Bouchiat, J. Appl. Phys. 100 (2006)

|TS|

SPC

Science des Procédés (et de Traitements de Su

NP growth: homogeneous nucleation theory

Kinetic equations for NP-NP reactions:

 $\tau = \int_0^t 16\pi R_1^2 \cdot \left(\frac{kT(t')}{\pi m_1}\right)^{\frac{1}{2}} \cdot \frac{N}{V(t')} dt'$

NP size ditribution fct of a

single parameter:

condensation rate τ

$$\frac{dn_k^*}{d\tau(t)} = \sum_{\substack{i+j=k\\i\leq j}} C_{ij} *.n_i *.n_j * -\sum_i C_{ik} *.n_i *.n_k *$$
Formation rate of k-sized
NP resulting from the
coalescence of a i-NP
and a j-NP

 C_{ij} : coalescence probability between a i-NP and a j-NP $n_i^* = \frac{N_i}{N}$ reduced variable n^*_i : number of i-sized NPs n^*j : number of j-sized NPs

NP examples - Nanostructures

*Orlianges Appl. Phys. Lett. 101 (2012)

Silver nanoparticles

HR-TEM image of Silver NPs embedded in amorphous C-matrix

Surface Plasmon Resonance of silver at $\lambda = 379$ nm

NP growth: homogeneous nucleation theory

Experimental (data collected from TEM images)

Ag, Co, Cu- NPs in PLD-Al2O3 matrix

500

*Crunteanu, Dumas-Bouchiat, Champeaux, Catherinot, Blondy, Thin Sol. Films 16 (2007)

Vanadium NPs

6

Solution NPs well **crystallised** in **cc** structure **at RT**

- Crystallised ~3 nm metallic NPs at RT, sharp size distribution
- High deposition rate (50 nm of V-NPs per 15 min)
- Flexible choice of materials:
 - Isolated NPs embedded in different matrix
 - Stacks of NPs (porosity properties)

Vanadium dioxide (VO2) thermochromic mat.

Reversible first order Insulator to Metal Transition at ~68°C (close to RT)

Solution Abrupt changes in electrical resistivity and optical properties (IR range)

- La Rochelle - 17-20 octobre 2016

Journées – Réseau Plasmas Froids

Nanosized VO₂ NPs vs VO₂ PLD thin films

Nanosized VO₂ NPs vs VO₂ PLD thin films¹

¹ANR Project MUFRED 2017-2019: VO₂ integration in microsystems: SPCTS, Xlim Limoges, LMGP Grenoble, IETR Rennes, Thales Paris, Lab-STICC Brest

Gaudin, Champeaux, Dumas-Bouchiat «From metallic vanadium nanoparticle assemblies to thermochromic VO2 behaviour», submitted

Combine VO₂ NPs & VO₂ PLD thin films

70

70

80

80

90

Nanocomposite: VO₂ NPs/Thin films

T (°C)

T (°**C**)

T (°C)

Cobalt NPs: stacking

- La Rochelle - 17-20 octobre 2016 Journées – Réseau Plasmas Froids ñ

Applications, playing with magnetic NPs

Hard magnetic film Grenoble/institut Neel/ N.M. Dempsey

Focus on Thermo-Magnetic Patterning: TMP

Dumas-Bouchiat Appl. Phys. Lett. 96 (2010)

Magnetic stray fields & forces

 F_{mz}

8.4

7.4

6.4

5.4

4.4

3.4

2.4

1.4

0.4

le-10 9.4

Microfluidic potential: NPs sorting

 μ -fluidic channel in PDMS, width = 500 μ m, t_{PDMS} on film \approx 10 μ m

ournées – Réseau Plasmas Froids – La Rochelle – 17-20 octobre 201

Magn. Sorting -> Zanini Appl. Phys. Lett. 99 (2011)

NPs sorting by guiding: Dynamic mode

Channel entrance

MicroBlaire Eur. Phys. J. B 86 (2013)

µ-magnetic imprinting MMI, N.M. Dempsey

0 - TMP structure

1 - Hard magnetic beads sprinkled onto master structure and concentrated at the interfaces of micro-magnets

- 2 polymer binder poured over the hard magnetic beads
- 3 Solid composite peeled off the master structure

MMI 3D 2

and magnetized

Magnequench® NdFeB powders GA50

- Cheap
- Flexible
- Transparent
- Biologicaly compatible
- One Master for thousands prototypes

Example of magn. polymer structures

Dempsey, Dumas-Bouchiat, Givord, Zanini Patent FR1254667 (2012), US 61/650,398 (2015) Soft magn- materials -> Leroy Mat. Today Comm. 1 (2016)

Other Free NP sources

Vanessa Orozco Montes, Cedric Jaoul, Pascal Tristant

Limoges Free NP source based on magnetron sputtering

Poster: Optical Emission Spectroscopy

A.: 2.8 cm

Relative Population (%)

Orozco Montes, Free Ag & Cu NPs based on magnetron sputtering, Best Poster Award E-MRS (2016) Orozco Montes, Electrical behavior of Al2O3 films doped with Ag NPs, Best Poster Award Electroceramics XV (2016)

Many thanks to students and especially:

2009-2012

Luiz Fernando Zanini

2013-2016

Michael Gaudin

2014- ...

Maileth Vanessa Orozco Montes

Thank you for your attention

