

Molecular growth and aerosol dynamic in some dusty/sooty discharges

LSPM group (HC discharges : particle formation and film deposition)
 F. Silva¹, G. Lombardi¹, F. Mohasseb, A. Michau¹, X. Bonnin¹, X. Duten, F. Benedic, K. Hassouni, J. Achard and A. Gicquel¹

• PIIM group (carbon particle formation) C. Arnas

• PICM group (Si-H discharge and Si-H particles formation) H. Vach and N. Ning

• Minnessota group (coupled discharge-aerosol dynamic in Si/H plasmas) S. L. Girshick

Journées du Réseau Plasmas Froids : 17-21 octobre 2016

Outline

Objective : to give an **illustration** of the work performed on dusty plasma modeling in the non-equilibrium discharge plasmas (laboratory plasmas) community

- → Plasma physicist point of view
- ➔ non exhaustive
- → Try to show different aspects that need to be considered

Research on dusty laboratory plasmas exhibits :

- **First phase :** investigation of dusty plasmas as complex media and the effect of dust on the plasma equilibrium
- Second phase : dust formation in discharge plasmas <u>and</u> dusty plasma effect

Motivation for the investigation of dust particle formation in laboratory plasma

In the beginning (late 80's, early 90's) : Particle issues in IC's manufacturing (50% of reject)

Merlino and Goree. Physics Today(2004)

Particle formation in RIE and PECVD devices using capacitively coupled Rf discharge → Most of the effort devoted to 13.56 MHz CCP discharges

Today we have a large number of motivations ::

- nanotechnology,
- nanocomposite materials,
- ITER project

Liu et al. Int. J. Nanomat., Nanotech and nanomed (2015)

Laboratory discharge plasmas

Some orders of magnitude : * $n_e = 10^8 - 10^{12} \text{ cm}^{-3} (<10^{-2} \text{ and more often } <10^{-5})$ * $<\varepsilon_e > = 1 - 10 \text{ eV}$ * $T_g = 300 - 6000 \text{ K}$ * $(T_v) = 1000 - 5000 \text{ K} \text{ (molecular gases)}$

Phenomenological description of typical laboratory plasma system

Gas phase generated species in laboratory plasmas

Bulk ambipolar Plasma

Gas phase reactions :

- → Atomic/molecular species : O-atom, F-atom, H-atom
- → Radicals : CH_3 , CF_3 , SiH_2 , SiH, SiH_3
- → Positive ions : CH_5^{+} , SiH_5^{+} , H_2^{+} , H_3^{+} , H^+ , O_4^{+} , etc.
- → Negative ions : H⁻, O⁻
- \rightarrow Large molecular structures : $S_nH_m^-$, $C_nH_m^-$, etc.
- → Nucleation and growth of solid particles

The parallel plate capacitively coupled radiofrequency discharges (13.56 MHz) (interest for the microelectronic industry)

Peculiarity of CCP RF discharges (13.56 MHz)

Typical modeling approach for RF discharges

Reaction	Reference	Reaction	Reference
$e^- + H_2(v=0) \rightarrow e^- + H_2(v=1)$	(R1) [3]	$H_2^+ + H \rightarrow H^+ + H_2$	(R25) [4]
$e^- + H_2(v=0) \rightarrow e^- + H_2(v=2)$	(R2) [3]	$H_2^2 + H_2^+ \rightarrow H_3 + H_3$	(R26) [4]
$e^- + H_2(v=0) \rightarrow e^- + H_2(v=3)$	(R3) [3]	$H + H^{-2} \rightarrow e^{-} + 2H$	(R27) [4]
$e^- + H_2(v=0) \rightarrow e^- + H_2(v=4)$	(R4) [3]	$\rm H + \rm H^{-} \rightarrow e^{-} + \rm H_{2}$	(R28) [4]
$e^- + H_2(v=0) \rightarrow e^- + H_2(v=5)$	(R5) [3]	$\mathrm{H^{+}}$ + $\mathrm{H_{2}}$ \rightarrow $\mathrm{H_{2}^{+}}$ + H	(R29) [4]
$\mathrm{e^-} + \mathrm{H_2} ightarrow 2\mathrm{e^-} + \mathrm{H_2^+}$	(R6) [3]	${ m H^+} + { m H^-} ightarrow { m 2H}$	(R30) [4]
$e^- + H_2 \rightarrow e^- + 2H$	(R7) [3, 5]	$\mathrm{H^{+}}$ + 2 $\mathrm{H_{2}}$ $ ightarrow$ $\mathrm{H_{3}^{+}}$ + $\mathrm{H_{2}}$	(R31) [4]
$e^- + H \rightarrow 2e^- + H^+$	(R8) [6]	$H^- + H_2^+ \rightarrow H_2 + H$	(R32) [4]
$e^- + H_3^+ \rightarrow 3H$	(R9) [7]	$\mathrm{H^-} + \mathrm{H_3^+} ightarrow 2\mathrm{H_2}$	(R33) [4]
$e^- + H_3^+ \rightarrow H + H_2$	(R10) [7]	$\mathrm{SiH}_3^- + \mathrm{SiH}_2^+ \rightarrow \mathrm{SiH}_3 + \mathrm{SiH}_2$	(R34) [8, 9]
$e^- + H_3^+ \rightarrow e^- + H^+ + 2H$	(R11) [6]	$\mathrm{SiH}_3^- + \mathrm{H}_2^+ \rightarrow \mathrm{SiH}_3 + \mathrm{H}_2$	(R35) [8, 9]
$e^- + H_2(v=4) \rightarrow H^- + H$	(R12) [5, 10]	$e^- + SiH_4 \rightarrow SiH_2^- + H_2$	(R36) [8, 9]
$e^- +H_2(v=5) \rightarrow H^- + H$	(R13) [5, 10]	$e^- + SiH_4 \rightarrow SiH_3^+ + H + 2e^-$	(R37) [8, 9]
$e^- +H_2(v=6) \rightarrow H^- + H$	(R14) [5, 10]	$\mathrm{SiH}_3^- + \mathrm{H}_3^+ \rightarrow \mathrm{SiH}_3 + \mathrm{H}_2 + \mathrm{H}_3$	(R38) [8, 9]
$e^- +H_2(v=7) \rightarrow H^- + H$	(R15) [5, 10]	${ m SiH_3^-} + { m H^+} ightarrow { m SiH_3} + { m H}$	(R39) [8, 9]
$e^- +H_2^+ \rightarrow e^- + H^+ + H$	(R16) [6]	$\mathrm{SiH}_3^- + \mathrm{SiH}_3^+ \rightarrow \mathrm{SiH}_3 + \mathrm{SiH}_3$	(R40) [8, 9]
$e^- + H_2^+ \rightarrow 2H$	(R17) [6]	$\mathrm{SiH}_2^- + \mathrm{SiH}_2^+ \rightarrow \mathrm{SiH}_2 + \mathrm{SiH}_2$	(R41) [8, 9]
$e^- + H^- \rightarrow 2e^- + H$	(R18) [6]	$\mathrm{SiH}_2^- + \mathrm{H}_2^+ \rightarrow \mathrm{SiH}_2 + \mathrm{H}_2$	(R42) [8, 9]
$e^- + SiH_4 \rightarrow 2e^- + SiH_2^+ + 2H$	(R19) [8, 9]	$\mathrm{SiH}_2^{-} + \mathrm{H}_3^{+} \rightarrow \mathrm{SiH}_2 + \mathrm{H}_2 + \mathrm{H}_3$	(R43) [8, 9]
$e^- + SiH_4 \rightarrow e^- + SiH_3 + H$	(R20) [8, 9]	${ m SiH}_2^{-}$ + ${ m H}^+$ $ ightarrow$ ${ m SiH}_2$ + H	(R44) [8, 9]
$e^- + SiH_4 \rightarrow e^- + SiH_2 + 2H$	(R21) [8, 9]	$\mathrm{SiH}_2^- + \mathrm{SiH}_3^+ \rightarrow \mathrm{SiH}_2 + \mathrm{SiH}_3$	(R45) [8, 9]
$e^- + SiH_4 \rightarrow e^- + SiH_4(v=1)$	(R22) [8, 9]	$H + SiH_4 \rightarrow SiH_3 + H_2$	(R46) [8, 9]
$e^- + SiH_4 \rightarrow e^- + SiH_4(v=2)$	(R23) [8, 9]	$H_2 + SiH_2 \rightarrow SiH_4$	(R47) [8, 9]
$e^- + SiH_4 \rightarrow SiH_3^- + H$	(R24) [8, 9]		

TABLE 1. Reaction model used to describe the chemistry of small molecular species in H_2/SiH_4 RF discharges.

Dynamic of charged species (O₂/Ar plasmas)

Electron density, electron and ion currents, power deposition and electron temperature

Resulting electrostatic structure

OML equilibrium (Ie+Ii=0) → Particle charge negative → particle trapping

1st phase investigation : investigation dust effect on the plasma equilibrium

The PKE chamber of Morfill et al., Morfill et al. PRL, 1999 Model of Akdim and Goodheer, PRE 2003 Ar, P=40 Pa, V_{RF} =70V, a=15 mm

- Particle with a given diameter are injected in the discharge
- Particle are treated as non reactive a plasma component that experiences charging and self consistent transport
- The presence of particles affect the electron/ion balance and the self-consistent field distribution

$$\frac{dn_{j}}{dt} + \vec{\nabla} \cdot \vec{\Gamma}_{j} = S_{j}, \qquad \vec{\Gamma}_{e} = -\mu_{e} n_{e} \vec{E} - D_{e} \vec{\nabla} n_{e} \qquad \frac{dE_{eff,i}}{dt} = \nu_{m,i} (\vec{E} - \vec{E}_{eff,i}).$$

$$\vec{E} = -\vec{\nabla} V, \qquad \vec{E} = -\vec{\nabla} V,$$

$$\Delta V = -\frac{e}{\epsilon_{0}} (n_{i} - n_{e} - Q_{d} n_{d})$$
Electron depletion due to particle charging
$$Affect \text{ the self consistent field}$$

Dust particles behavior in a discharge plasma Forces experienced by dust particles in a plasma

• The particle density is governed by a continuity equation

$$\frac{dn_p}{dt} + \vec{\nabla} . \vec{\Gamma_p} = 0 \qquad \qquad \vec{\Gamma_p} ? : \text{ Depends of the force field}$$

Electrostatic (∞a)

$$\vec{F}_E = q_p \vec{E} \left(1 + \frac{\left(\frac{a}{\lambda_d}\right)^2}{3\left(1 + \frac{a}{\lambda_d}\right)} \right)$$

Magnetic (Lorentz $\propto a$) $\vec{F}_M = \frac{q_p}{c} \vec{v}_p \times \vec{B}$

Drag forces ($\propto a^2$) $\vec{F}_{n,i} = m_{n,i} v_{pn,i} (\vec{u}_{n,i} - \vec{u}_p)$ Thermophoresis ($\propto a^2$) $\vec{F}_T = -8a^2 \frac{k_b \mu_{ref}}{m_n v_T} (\frac{T}{T_{ref}})^{0.81} \nabla T$

Gravitational force (∞a^3) $\vec{F}_g = m_p \ \vec{g}$

Drift-diffusion flux for dust :

Dust particles behavior in a discharge plasma Forces experienced by dust particles in a plasma

Some orders of magnitude for typical low temperature plasmas conditions from Bouchoule et al.

	a = 100 nm	$a = 1 \ \mu m$
Electrostatique	$\approx 2.10^{-13}$ N	$\approx 2.10^{-12}$ N
Entraînement par les neutres	$\approx 10^{-15}$ N	$\approx 10^{-13} \text{ N}$
Entraînement par les ions	$\approx 5.10^{-14}$ N	$\approx 10^{-12} \mathrm{N}$
Thermophorèse	$\approx 10^{-15}$ N	$\approx 10^{-13} \text{ N}$
Gravitationnelle	\approx 10-16 N	≈ 10-13 N

- Small particles : only electrostatic and ion drag are to be considered
- Large particle (> 1µm) : all forces start entering into the play

Effect of dust particles on the discharge characteristics

from Akdim and Goodheer, PRE 2003

With

Reduction of the plasma volume and decrease of the plasma voltage

Effect of dust particles on the discharge characteristics

Significant depletion of the electron density and reduction in the plasma volume

Effect of dust particles on the discharge characteristics

Significant increase of the electron average energy to sustain the discharge

Space distribution of dust density and charge in the discharge

- Dust located in the vicinity of the sheath → balance between electrostatic and ion drag forces
- Large charge number correlated to the plasma local parameters

Summary

- First set of studies that describe laboratory dusty plasma uses :
 - Monomodal distribution (a single size particles)
 - A given particle density
- → Investigate the effect of the particle cloud o the discharge dynamics :
 - \rightarrow particle charging and electron depletion
 - → Effect on electron temperature and ionization kinetics
 - → Charged partices dynamics and self consistent field distribution
 - \rightarrow Structure of the particle cloud : void, etc.

A dust cloud has a broad size disctribution and is contantly evolving : density, size and charge

First Improvement line : Self consistent description of aerosol and plasma dynamics

Make use of a sectional model for particles → determine the size distribution, and in some cases the charge distribution

- → The size/charge distribution are governed by a set of master equations where a continuity equation is expressed for each size/charge section.
- → The particle are no longer « inert » : small particle can appear spontaneously (nucleation) and grow through sticking and coagulation.

$$\frac{\partial Q_l(t)}{\partial t} = \frac{\partial Q_l(t)}{\partial t}_{coag} + \frac{\partial Q_l(t)}{\partial t}_{sticking} + S_{nucleation} - \nabla F_l$$

 Q_1 mass density for a section 1

→ We therefore need a satisfactory description of nucleation, coagulation and sticking

Particle charging is a key point :

==> Enhanced particle charging insures a significant trapping and long residence time

==> Enhanced particle charging prevents coagulation and growth

The only way to have growth ==> charge fluctuation and electron depletion

Possible because particle charg ing is a discrete process \rightarrow Dynamic fluctuation of small particles between positively and negatively charged states

 \rightarrow Coagulation takes place between two particles that has opposite instantanous charges or no charge \rightarrow involve small particles.

 $\tau_{coag}^{<<\tau}$ fluctuation $^{<<\tau}$ trans

 \rightarrow Transport feels the average charge

$$\frac{d\overline{q}_{i}}{dt} = -\frac{div(\overline{J}_{i} - \overline{q}_{i}div(\overline{F}_{i}))}{n_{i}} + \frac{wq_{coag}^{+} - \overline{q}_{i}w_{coag}^{+}}{n_{i}} + \frac{wq_{growth}^{+} - \overline{q}_{i}w_{growth}^{+}}{n_{i}} + \frac{I^{+} - I^{-}}{n_{i}}$$
Coagulation feels the fluctuations
$$\psi(q, \overline{q}) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(q - \overline{q})^{2}}{2\sigma^{2}}\right] \quad \sigma = f\left(\frac{T_{e}}{T}, \frac{U_{el}}{U_{th}}\right)$$

The only way to have growth ==> charge fluctuation and electron depletion Possible because particle charging is a discrete process

→ Dynamic fluctuation of small particles between positively and negatively charged states

- Coagulation takes place between two particles that has opposite instantanous charges or no charge
- → coagulation involves small particles

$$au_{coag}^{{\color{red} {\scriptsize{\triangleleft}}} {\color{black} {\scriptsize{\triangleleft}}} \tau}$$
fluctuation

→ Coagulation « feels » charge fluctuations

$$\psi(q,\overline{q}) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(q-\overline{q})^2}{2\sigma^2}\right]$$

→ needs to consider a detailed size distribution

NUMERICAL MODEL (1D, TRANSIENT) RF parallel-plate capacitively-coupled plasma

Plasma

Pop. balance eqs. for electrons & ions Electron energy eq. (assuming Maxwellian) Poisson's eq. for E-field

Chemistry

e, Ar, Ar^{*}, H, H₂, H₂⁺ SiH₂, SiH₃, SiH₄, SiH₂⁻, SiH₃⁻, SiH₃⁺ Si(s), SiH(s), Si(B)

Aerosol

Sectional model for particle size & charge distributions Finite-rate particle charging by electron & ion attachment (OML) Coagulation (size & charge-dependent, incl. image potentials) Transport by neutral drag, ion drag, diffusion, electric force, gravity Nucleation rate = production rate of $Si_2H_4^-$ Particle surface growth by rxns with Si_1H_m species

Self-consistent coupling of all modules

From S. L. Girshick, University of Minnessota

PARTICLE SIZE DISTRIBUTION & AVERAGE CHARGE

- Increasing voltage causes ion drag to increase
- Pushes large particles upstream
- Creates void in center, allowing fresh nucleation

From S. L. Girshick, University of Minnessota

PARTICLE SURFACE AREA & NUCLEATION RATE

- Competition for SiH_x radicals between nucleation and surface growth
- High particle surface area concentration quenches nucleation

From S. L. Girshick, University of Minnessota

CHARGE CARRIER DENSITY PROFILES

 $V_{\rm rf} = 100 \, {\rm V}$

 $V_{\rm rf} = 250 \ {\rm V}$

- Electrons strongly depleted by nanoparticle cloud
- Regions of high SiH_n^- density = regions of fresh nucleation

From S. L. Girshick, University of Minnessota

Second Improvement line : Investigation of the nucleation phase : the molecular growth

Second Improvement line : Investigation of the nucleation phase : the molecular growth

Start with a plasma model that yields the chelistry and density of small species

TABLE 1. Reaction model used to describe the chemistry of small molecular species in H_2/SiH_4 RF discharges.

Reaction	Reference	Reaction	Reference
$e^{-} + H_2(v=0) \rightarrow e^{-} + H_2(v=1)$	(R1) [3]	$H_2^+ + H \rightarrow H^+ + H_2$	(R25) [4]
$e^{-} + H_2(v=0) \rightarrow e^{-} + H_2(v=2)$	(R2) [3]	$H_2^2 + H_2^+ \rightarrow H_3 + H$	(R26) [4]
$e^{-} + H_2(v=0) \rightarrow e^{-} + H_2(v=3)$	(R3) [3]	$H + H^{-} \rightarrow e^{-} + 2H$	(R27) [4]
$e^{-} + H_2(v=0) \rightarrow e^{-} + H_2(v=4)$	(R4) [3]	$\rm H + \rm H^- \rightarrow e^- + \rm H_2$	(R28) [4]
$e^{-} + H_2(v=0) \rightarrow e^{-} + H_2(v=5)$	(R5) [3]	$\mathrm{H^{+}}$ + $\mathrm{H_{2}}$ \rightarrow $\mathrm{H_{2}^{+}}$ + H	(R29) [4]
e^- + $H_2 \rightarrow 2e^-$ + H_2^+	(R6) [3]	${ m H^+} + { m H^-} ightarrow { m 2H}$	(R30) [4]
$e^- + H_2 \rightarrow e^- + 2H$	(R7) [3, 5]	$\mathrm{H^{+}}$ + 2 $\mathrm{H_{2}}$ $ ightarrow$ $\mathrm{H_{3}^{+}}$ + $\mathrm{H_{2}}$	(R31) [4]
$e^- + H \rightarrow 2e^- + H^+$	(R8) [6]	$H^- + H_2^+ \rightarrow H_2^- + H_1$	(R32) [4]
$e^- + H_3^+ \rightarrow 3H$	(R9) [7]	$\mathrm{H^-} + \mathrm{H_3^+} ightarrow 2\mathrm{H_2}$	(R33) [4]
$e^- + H_3^+ \rightarrow H + H_2$	(R10) [7]	$\text{SiH}_3^- + \text{SiH}_2^+ \rightarrow \text{SiH}_3 + \text{SiH}_2$	(R34) [8, 9]
$e^- + H_3^+ \rightarrow e^- + H^+ + 2H$	(R11) [6]	$\operatorname{SiH}_3^- + \operatorname{H}_2^+ \xrightarrow{\sim} \operatorname{SiH}_3 + \operatorname{H}_2$	(R35) [8, 9]
$e^+ + H_2(v=4) \rightarrow H^- + H$	(R12) [5, 10]	$e^- + SiH_4 \rightarrow SiH_2^- + H_2$	(R36) [8, 9]
e^{-} +H ₂ (v=5) \rightarrow H ⁻ + H	(R13) [5, 10]	$e^- + SiH_4 \rightarrow SiH_3^+ + H + 2e^-$	(R37) [8, 9]
$e^+ + H_2(v=6) \rightarrow H^- + H$	(R14) [5, 10]	$\operatorname{SiH}_3^- + \operatorname{H}_3^+ \to \operatorname{SiH}_3^- + \operatorname{H}_2^- + \operatorname{H}_3^-$	(R38) [8, 9]
$e^+ + H_2(v=7) \rightarrow H^- + H$	(R15) [5, 10]	$SiH_3^- + H^+ \rightarrow SiH_3 + H$	(R39) [8, 9]
$e^- +H_2^+ \rightarrow e^- + H^+ + H$	(R16) [6]	$SiH_3^- + SiH_3^+ \rightarrow SiH_3 + SiH_3$	(R40) [8, 9]
$e^- + H_2^{\mp} \rightarrow 2H$	(R17) [6]	$\mathrm{SiH}_2^- + \mathrm{SiH}_2^+ \rightarrow \mathrm{SiH}_2 + \mathrm{SiH}_2$	(R41) [8, 9]
$e^- + \tilde{H^-} \rightarrow 2e^- + H$	(R18) [6]	$\mathrm{SiH}_2^- + \mathrm{H}_2^+ \xrightarrow{\sim} \mathrm{SiH}_2 + \mathrm{H}_2$	(R42) [8, 9]
$e^- + \mathrm{SiH}_4 \rightarrow 2e^- + \mathrm{SiH}_2^+ + 2\mathrm{H}$	(R19) [8, 9]	$\operatorname{SiH}_2^{-} + \operatorname{H}_3^{+} \to \operatorname{SiH}_2 + \operatorname{H}_2 + \operatorname{H}_2$	(R43) [8, 9]
$e^- + SiH_4 \rightarrow e^- + SiH_3 + H$	(R20) [8, 9]	$\operatorname{SiH}_2^{-} + \operatorname{H}^{+} \to \operatorname{SiH}_2 + \operatorname{H}$	(R44) [8, 9]
$e^- + \mathrm{SiH}_4 \to e^- + \mathrm{SiH}_2 + 2\mathrm{H}$	(R21) [8, 9]	$\operatorname{SiH}_2^{-} + \operatorname{SiH}_3^+ \to \operatorname{SiH}_2^+ \operatorname{SiH}_3$	(R45) [8, 9]
$e^- + SiH_4 \rightarrow e^- + SiH_4(v=1)$	(R22) [8, 9]	$H + SiH_4 \rightarrow SiH_3 + H_2$	(R46) [8, 9]
$e^- + SiH_4 \rightarrow e^- + SiH_4(v=2)$	(R23) [8, 9]	$H_2 + SiH_2 \rightarrow SiH_4$	(R47) [8, 9]
$e^- + SiH_4 \rightarrow SiH_3^- + H$	(R24) [8, 9]		

Typical results

Feed gas: H₂/SiH₄ mixture (2% SiH₄, 98% H₂) Excitation voltage : 100 – 500 V Pressure : 0.5 – 2 Torr

Growth of Si_nH_m clusters in a plasma reactor

Using our results from the plasma modeling, we now can follow the dynamics of the cluster growth as a result of the consecutive capture of plasma radials (SiH₄, SiH₃, SiH₂...).

From Holger VACH, Q. Brulin, and Ning Ning

At each time step in our MD calculation, we solve the Schrödinger equation ("on the fly"):

$$H_{tot}\Psi = E\Psi$$

$$H_{tot} = \sum_{A} \sum_{\angle B} \frac{Z_A Z_B}{r_{AB}} - \sum_{A} \sum_{i} \frac{Z_A}{r_{Ai}} + \sum_{i} \sum_{\angle j} \frac{1}{r_{ij}} - \frac{\hbar}{2\pi . m} \sum_{i} \nabla_i^2 - \frac{\hbar}{2\pi . M_A} \sum_{A} \nabla_A^2$$

For our system, it is impossible to solve Schrödinger's equation directly. Therefore, we employed the semi-empirical PM3 method to calculate the electronic structure of our system; e.g., we used three approximations for solving the electronic Schrödinger equation (reference: J.J.P. Stewart, J. Comput. Chem. <u>10</u> (1989) 209 and 221):

1) The Born-Oppenheimer's approximation :

$$H_{tot} = \sum_{A} \sum_{\angle B} \frac{Z_A Z_B}{r_{AB}} - \sum_{A} \sum_{i} \frac{Z_A}{r_{Ai}} + \sum_{i} \sum_{\angle j} \frac{1}{r_{ij}} - \frac{\hbar}{2\pi . m} \sum_{i} \nabla_i^2$$

From Holger VACH, Q. Brulin, and Ning Ning

Approximations used in LPICM molecular dynamic code

2) The wave function can be written as a Slater determinant.

$$\Psi = (n!)^{-1/2} \left| \Psi_p^{\alpha}(1) \Psi_p^{\beta}(2) ... \Psi_z^{\alpha}(n-1) \Psi_z^{\beta}(n) \right|$$

where $\Psi_p^{\alpha}(1)$ is a p wave function for an electron with spin α

3) LCAO approximation:

$$\Psi_{p}(i) = \frac{1}{\sqrt{N_{p}}} \sum_{k} c_{k}^{p} \Phi_{k}(i)$$

$$Where S_{kl} \text{ is the integral}$$

$$N_{p} = \sum_{k} \sum_{l} c_{k}^{p} c_{l}^{p} S_{kl}$$
overlap beetwen k and l.

Within the PM3 method, we use *s*, p_x , p_y , p_z as basis set. From Holger VACH, Q. Brulin, and Ning Ning

Growth of Si_n H_mclusters in a plasma reactor

LPICM

Under realistic SiH₄ plasma conditions, we always find amorphous nanostructures.

Holger VACH, Q. Brulin, and Ning Ning

Growth of Si_n H_mclusters in a plasma reactor LiPICM

Role of atomic H for the crystallization of an amorphous $Si_{24}H_{25}$ nanoparticle

BEFORE ...

AFTER ...

... the collision with 10 thermal H atoms

Holger VACH, Q. Brulin, and Ning Ning

•Hydrogenated silicon nanoparticle coagulation and deposition

soft landing

destructive deposition

N. Ning and H. Vach, J. Phys. Chem. A 114, 3297 (2010).

Particle formation in other discharge configuration

So far :

Particle are also observed in :

DC discharge

Particle formation driven by Negative ion clustering

MW discharge

Particle formation driven by neutral clustering

Particle formation driven by Negative ion clustering

Magnetized discharge

?

Neutral species driven dust (soot) particle The example of diamond deposition plasma processes

Bell Jar Reactor type

- 2-6 kW
- P=25-200 mbar

Deposition parameters

- %*CH*₄ : 0.25 16 %
- Ts : 400 1000°C
- t
- dP_{MW} : 9 30 W/cm³
- : 0.5 600 h

Sheath

few tens of microns totally collisional for ions very small potential drop (floating) →very low energy ions →Low ion flux (vs atom and radicals)

PACVD of diamond principle

Consequence on the film morphology and texture

- selective secondary nucleation :
 - Stable (100) faces
 - unstable (111) faces

- «isotropic» secondary nucleation :
 - unstable (100) faces
 - Unstable (111) faces

From H_2/CH_4 to $H_2/Ar/CH_4$ From PCD to NCD

Redish soot particles

on the growth ? and change in the film microstructure ?

Implication

Understanding the soot formation A modeling approach : quasi-homogenous plasma assumption

Modeling objective : estimate the gas and electron temperatures, species densities, particle size distribution (or its moments) in the uniform plasma bulk

2C-model (1)

Based on the kinetic models developed for H_2/CH_4 discharges^(1,2):

- 38 species (with e⁻)
 - Neutral and charged hydrogen compounds:
 - H_2 , H, H(n=2), H(n=3), H⁺, H_2^+ and H_3^+
 - Hydrocarbon molecules up to 2 C-atoms and their corresponding ions:
 - $C_{x}H_{y}$ (x = 1-2, y = 0-6), ¹CH₂, C⁺, CH₃₋₅⁺, C₂⁺, C₂H₁₋₆⁺
 - Argon based compounds:

Ar, Ar^* , Ar^+ , ArH^+ and ArH^{+*}

• 147 chemical reaction mechanism describing

- the chemistry of pure hydrogen discharge
- the thermal hydrocracking of H₂/CH₄ mixture
- the chemistry of hydrocarbon ions

⁽¹⁾Hassouni et al., Plasma Chem. Plasma. Process. (1998) ⁽²⁾Hassouni et al., Plasma Sources Sci. Technol. (1998)

- the reactions due to the presence of argon

Species distribution in the plasma reactor

A4/A9 models (1) Radicalar growth of PAH and nucleation mechanism

• Mechanism of Poly-Aromatic Hydrocarbons (PAHs) formation⁽¹⁾

A4/A9 models (2) Radicalar growth of PAH and nucleation mechanism

Hydrogen Abstraction Carbon Addition (HACA)

⁽¹⁾ Wang et Frenklach., Comb. Flame (1997)

A9/A4 models (3) Nucleation mechanism

Nucleation of soot particles

The aerosol dynamic governing equations

- N_i : density of particles with a size i
- **R** = nucleation rate (estimated from the chemical kinetics model)
- G = <u>coagulation</u> rate (2 particles → larger particles)
- W = growth rate (surface growth hetergenous chemistry)
- **T** = particle losses due to transport : diffusion, thermophoresis, drag, etc..

Approach : Fractional moment Frenklach et al., combustion and flame

Master equation for a particle size i (i=1- ∞)

$$\frac{dN_i}{dt} = \widetilde{R}_i + \widetilde{G}_i + \widetilde{W}_i + \widetilde{T}_i$$

R = nucleation (from molecular growth model) G = <u>coagulation (increase the size and decrease density)</u> W = Sticking (increase the size and keep the density constant) T = transport (mainly diffusion, thermophoresis in MW)

rth order moment :

$$M_r = \sum_{i=1}^{\infty} m_i^r . N_i$$

0 order moment → total density
1st order moment → total mass and volume fraction
1/3rd moment → average diameter
2/3 rd moment → avergae surface ...

The moment approach

Try to derive governing equations for the moment of the distributions $M_r = \sum_{i=1}^{\infty} m_i^r N_i$ $\mu_r = \frac{M_r}{M_0}$

These contain the most relevant information : numerical density (0th order), mass density (1th order), mean diameter (1/3th order), specific surface (2/3th order), optical properties, etc.

$$\frac{dN_i}{dt} = \widetilde{R}_i + \widetilde{G}_i + \widetilde{W}_i + \widetilde{T}_i \qquad \Longrightarrow \qquad \frac{dM_r}{dt} = \frac{\sum_i dN_i m_i^r}{dt} = \sum_i \left(\widetilde{R}_i + \widetilde{G}_i + \widetilde{W}_i + \widetilde{T}_i\right) m_i^r \qquad \Longrightarrow \qquad \frac{dM_p}{dt} = R_p + G_p + W_p + T_p$$

* The major difficulty \rightarrow express R_p , G_p , W_p , T_p . These often depend on fractional moments

Exp: $G_0 = K_c M_0^2 [(1 + \mu_{-1/3} \mu_{1/3}) + \gamma (\mu_{-1/3} + \mu_{1/3} \mu_{-2/3})]$ (For collisionnal regime)

How can we get these fractional moments from integer ones ? → Use Lagrange Interpolation:

$$\log \mu_{q/p} = L_{q/p} \left(\log \mu_0, \log \mu_1, ..., \log \mu_{r \max} \right)$$

Coupling between the soot and the plasma

Soot is almost neutral in these conditions : fairly high temperature (> 1500 K) →strong themoelectronic emission for negatively charged species

The coupling is thermochemical : energy balance (soot radiate) and species balance (species react on soot surface, molecular growth leads to soot)

Radical mechanisms Models : A4-model (8)

✓ Nucleation of soot particles

 \checkmark Time-scale for soot formation \approx 1-10 s \checkmark High nucleation rate below 1500 K

Strong decrease for higher T_g

K. Hassouni, F. Mohasseb, F. Bénédic, G. Lombardi and A. Gicquel, PAC, Vol. 78, Issue 6, p. 1127

Radical mechanisms models: A9-model (13)

✓ Nucleation of soot particles

K. Hassouni, F. Mohasseb, F. Bénédic, G. Lombardi and A. Gicquel, PAC, <u>Vol. 78</u>, <u>Issue 6</u>, p. 1127

Self consistent modeling of chemistry and aerosol dynamic

Feed-back of soot particles on the plasma chemistry takes place through heterogeneous condenstation reactions which depends on the 2/3 order moment (soot surface per unit volume).

K. Hassouni, F. Mohasseb, F. Bénédic, G. Lombardi and A. Gicquel Vol. 78, Issue 6, p. 1127

Self consistent modeling of chemistry and aerosol dynamic

Significant nucleation (10^7 cm^{-3}) in the cold region of the plasma Up to H/C = 16 !!!! \rightarrow implication on film growth ????

Second example : graphite cathode dusty argon DC discharge

Argon DC Discharge - graphite Cathode C. Arnas PIIM

 $T_{growth} \sim 100.T_{diffusion}$ electrostatic trapping of charged species

Dusts are produced by the sputtering of the graphite cathode:

- Argon ions accelerated in the sheath
 - Fast neutrals resulting from charge transfer

Dust formation : speculated mechanism

 \checkmark Estimation of discharge main characteristics: flux and ion energy distribution or ion average energy on the cathode

- \checkmark Extraction of C_1 , C_2 et C_3
- \checkmark Formation of $C_{n=1,nl}$ clusters, where n_l is arbitrary chosen (n_l =30 or 60)
- ✓ Nucleation of carbon dusts from clusters: Assumption of 'Largest Molecular Edifice'
- \checkmark Growth, transport and wall losses of dusts
- \checkmark Dust charging
- \checkmark Size distribution of dusts

Molecular growth modelling of carbon clusters and dusts

Carbon cluster growth reactions**

<u>Bernholc & Schweigert models (classical models) (**):</u>

· Growth = one single process ($C_n + C_x \rightarrow C_{n+x}$), but take into account the stability of the C_n clusters

- First version of the model took into account neutral clusters
- Molecular growth of clusters
 - Rates computed according to formation enthalpies
 - Clusters have configurational isomers (chains, rings, multi-cycles) distinguished by cyclization entropy (20 kcal/mol/cycle)
 - Extrapolation for unknown values according to cluster periodicities

Formation enthalpies & nombres magiques

→Low pressure discharge : p=10-100 Pa

 \rightarrow Diffusion characteristic time =1-10 ms very short as compared to the growth chemistry \rightarrow no possibility for growth of neutral

→ Need for species with higher residence time :

Negative clusters

And

Trapping electric field configuration

➔ Back to some basic DC discharge physics

Electric field reversal and molecular growth of negative clusters

- Charging of dust particles only effective if electric field is confining !
- Where is the confining electric field ? → Kolobov & Tsendin, Phys. Rev. A
 46 7837, Boeuf & PitchFord, J. Phys. D, (1994)
 - Self-consistent electric field reversal: confinement
 - Three electron populations: energetic, passing, trapped

Negative carbon cluster growth reactions

From Y. Achiba et al., J. Elect. Spect. Related Phen. 142, 231 (2005)

• <u>Attachment</u> $C_n + e^- \rightarrow C_n^-$

- Rates computed according to electronic affinities

- Charge exchange $C_n^- + C_x \rightarrow C_n + C_x^-$
 - Electronic affinities

$$T_{i^{-}j} = \alpha R_{ij}^{3} e^{-\xi^{-} \frac{\Delta A_{i} + \Delta H_{j}}{kT}}$$

- <u>Dust agglomeration</u> (sticking)
- <u>Detachment</u> $C_n^- + e^- \rightarrow C_n + 2e^-$

Plasma Characteristic

- Electron density in good agreement with experimental results
- High density for 1-4 cm from the cathode strong decrease in FDS
- Reversal at 2 cm from the cathode.
- Electrostatic trapping of negative species at this position

Cluster population : time, space and size distributions

Space distributions of dust density, average size and average charge

dust density, average charge, and average size after 600 s discharge

Particle cloud also localized at the field reversal position
Particle diameter is around 20 nm in the cloud
Maximum average charge : -4 → close to OML equilibrium

Infered cluster growth mechanism

Nucleation

- Nucleation due to growth of C_{30}^-
- Particle nucleation remains during all discharge duration
- Decrease of nucleation rate due to consumption of clusters sticking on existent particles

Aerosol Model : Particle Volume

Gelbard J. of Colloid and Int Sci **76**, 1980 Warren Aerosol Sci and Tech, 4 1985

Aerosol Model : Particle Charge

 $k_{coag}(q, q') = k_{coag}(0, 0).w(q, q')$

->need for charge distribution for each section in each point

Solution adopted

<u>Charge balance</u> : averaged particle charge for each section

$$\frac{\partial q_l}{\partial t} = -\frac{\vec{\nabla}(q_l \vec{F}_l)}{Q_l} + \left(I_{e-slow} + I_{e-fast} + I_i\right)S_l + S^q_{nuc} + S^q_{coag} + S^q_{sticking}$$

<u>Fluctuation</u> \Leftrightarrow Poisson's charge distribution : $\Psi(q, \overline{q})$

$$\psi(q,\overline{q}) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(q-\overline{q})^2}{2\sigma^2}\right] \qquad \sigma = f\left(\frac{T_e}{T},\overline{q},d_p\right)$$

T. Matsoukas, M. Russell, 1995 *Journal of Applied Physics* 77, p. 4285

Aerosol Dynamics Results

INSIS

Aerosol Dynamics Results Particle growth mechanism at 100 s

x= 2 cm

Size distribution

Particle Density

• C,C₂,C₃ from sputtering

Aerosol Dynamics Results size distribution for long duration

x= 2 cm

Particle Density

Two-population distribution with a strong depletion between 2 and 10 nm

Aerosol Dynamics Results Coagulation kinetics for long discharge duration

Coagulation source Term

Coagulation = 1 neutral particle of 1-2 nm + 1 negative particle

Density : Particle density 10⁸ cm⁻³ close to measurements

Size distribution :

Good agreement at 300 s

Delay may be due to time variation of the sputtering yield $Y=10^{-2}$ $\Gamma=6.10^{15}$ cm⁻².s⁻¹

Conclusion

- Plasma poudreux ou dusty plasmas : thématique de +50 ans mais il reste beaucoup à faire
 - Physique des plasmas : instabilités, transitions de phases, distributions de charge et de taille
 - Physique atomique et moléculaire : croissance molécuaire
 - Physique de la matière condensée (agrégats) : transition de phase (agrégats), nucléation,
 - Matériaux : structure, propriétés, manipulations, etc....

