

FrançoiseMassines

- I- Dépôt de couches minces nanostructurées par PECVD à pression atmosphérique ?
 - 1. Principe de la PECVD
 - 2. Nanostructuration
 - 3. Composites
- II- Dépôt de composites par PECVD à PA
 - 1. Deux précurseurs
 - 2. Nanoparticules comme précurseur
 - 3. Procédé en une étape
- III- Physique des décharges hors équilibre à la pression atmosphérique
 - 1. Comment la décharge s'amorce lorsque Pxd est élevé?
 - 2. Comment éviter la transition à l'arc?
 - 3. Quelles sont les caractéristiques des micro-décharges ?
 - 4. Décharges homogènes à la pression atmosphérique
 - 5. Comparaison des différentes DBD
- IV- Design de la forme d'onde de la tension qui génère le plasma pour contrôler les nanocomposites

Le plasma

Plasma froid

Gaz ionisé = Milieu hautement réactif

Plasma froid = moins de 1/10000 atome du gaz ionisé

Le plasma : un milieu hautement réactif

Procédé type PECVD

Le plasma : un milieu hautement réactif

- ✓ Plasma froid: Dépôt sur substrat thermosensible (polymer, multicouche)
- ✓ Précuseur gazeux:
 - Peu d'effluent : procédé propre
 - La miscibilité des précurseurs n'a pas d'importance

Dépôt de couches structurées

Même précurseur (TiC₁₂H₂₈O₄) 2 conditions plasma

100% 0₂: Croissance colonnaire

Ar + $10\% O_2$: Couche dense

Ar- 10%O2

Journal of the electrochemical society 154(2007)152

orientation du flux de précuseur

✓ Plasma d' O_2 → Es très réactives, peu m

✓ Effet d'ombrage

a Ar + O₂ → Espèces ives, très mobiles (Ti_xC_vH_z)

Microporous and mesoporous Matérials 160 (2012) 1

Plasmas adaptés pour réaliser des nanostrutures

Francisco J. Aparicio fiaparicio@icmse.csic.es http://www.sincaf.icmse.csic.es/

PROMES

Dépôt de couches minces composites

Nanoparticules de Si dans SiO₂ (semiconducteur/diélectrique)

Multicouche

Composite

H. Kintz htps://tel.archives-ouvertes.fr/tel-00958453/

Matériau composite: assemblage d'au moins 2 composants non miscibles (domaine identifiable) ayant une forte capacité de pénétration qui forme un nouveau matériau multifonctionnel

Dépôt de couches minces composites

Nanoparticules de Si dans SiO₂ (semiconducteur/diélectrique)

Nanoparticules semiconductrice

Dépôt de couches minces composites

Nanoparticules de Si dans SiO₂ (semiconducteur/diélectrique)

Multicouche

H. Kintz htps://tel.archives-ouvertes.fr/tel-00958453/

Matériau composite: assemblage d'au moins 2 composants non miscibles ayant une forte capacité de pénétration qui forme un nouveau matériau multifonctionnel

Couches nanocomposites pour la protection du bois exxtérieur

Revêtement Multifonctionnel

- I- Dépôt de couches minces nanostructurées par PECVD à pression atmosphérique ?
 - 1. Principe de la PECVCD
 - 2. Nanostructuration
 - 3. Composites
- II- Dépôt de composites par PECVD à PA
 - 1. Deux précurseurs
 - 2. Nanoparticules comme précurseur
 - 3. Procédé en une étape
- III- Physique des décharges hors équilibre à la pression atmosphérique
 - 1. Comment la décharge s'amorce lorsque Pxd est élevé?
 - 2. Comment éviter la transition à l'arc?
 - 3. Quelles sont les caractéristiques des micro-décharges ?
 - 4. Décharges homogènes à la pression atmosphérique
 - 5. Comparaison des différentes DBD
- IV- Design de la forme d'onde de la tension qui génère le plasma pour contrôler les nanocomposites

Composite à partir de 2 précurseurs

UNIVERSITEIT

Composite à partir de 2 précurseurs

No possibility of independent control size and concentration of NPs

Plasma school, Bochum 2016

Spray d'une suspension de NPs

Thermal plasma: nano-coatings

"J.Therm. Spray Tech. 24(3), 2015, 401

Coating fabrication:

Atmospheric pressure plasma spray TiO₂ (30 nm, 85% anatase) powder + CeO₂ (15 nm cubic fluorite phase) Substrate Ti Power 40 kW, Ar + H₂ gas

Powder feeding rate 30 g/min

No release of Ce ions Effect of ROS is claimed

PROMES

Plasma school, Bochum 2016

Composite à partir de NPs et du précurseur de la matrice

Current 20 mA Flow N₂ 7 I/min Flow O₂ 60 sccm

AgNPs of 20 or 100 nm size

Operational parameter

Plasma working gas	N ₂ , air
Flow rate	8 slm
Discharge current	5-25 mA

Discharge current

PROMES

Composite à partir de NPs et du précurseur de la matrice

Low AgNPs (100 nm) density

No agglomeration

Décomposition des étapes

1. Plasma deposition of 1st layer (reservation layer) 70-200 nm

2. Dipping incorporation of AgNPs (antibiotic)

3. Plasma deposition of 2nd layer (barrier layer)

10 nm & 50 nm

Plasma school, Bochum 2016

Composite en 1 seule étape

Solid NPs are embedded in the coating made by the polymerization of the liquid precursor

Advantage: NPs have well controlled properties and size

First publication: Bardon et al., Plasma Process. Polym. 2009, 6, S655

PROMES

Set-up: plasma direct

 TiO_2 25nm + isopropanol (CH(CH₃)₂OH) spray

PROMES

Plasma linéaire

Advantages of atmospheric pressure : roll to roll treatment

Example: Polymer coating for food packaging, anti-scratch ...

- ✓ Avoids pumping units
- ✓ Avoids batch treatment
- ✓ Easy to up-scale :

Linear plasma of several meters

on-line treatment of large surfaces

AP-PECVD state of the art

In specific conditions with a limited control of the size, structure and chemical composition of NPs

PROMES

Nitrogen-Doped TiO_2 Nanoparticles and Their Composites with Plasma Polymer as Deposited by Atmospheric Pressure DBD Artem Shelemin et al., Plasma Processes and Polymers, Vol 11, Issue 9, pp. 864–877, September 2014

The deposition of copperbased thin films via atmospheric pressure plasma-enhanced CVD, Hodgkinson et al. SURFACE & COATINGS TECHNOLOGY, 230, pp. 260-265

AP-PECVD state of the art

✓ At industrial level:

- Functional groups grafting
- Films of some nanometers

www.**cpi**-plasma.com/

✓ At pilote level:

- Dense homogeneous thin films
 - O₂ and H₂O barrier layer on polymer thin film (PEN OTR < 510⁻² cm³/m²dayatm, WVTR < 510⁻³ g/m²day, OTR BIF>4000)
 - Antireflective and passivating coating

Starostin et al, Plasma Processes and Polymers, 2015, 12, 545

Massines et al, Plasma Processes and Polymers, online: 16 Dec 2015 DOI:10.1002/ppap.20150 0182

✓ New trend at laboratory level:

nanocomposite thin films: i.e. multiphase materials
 organized into spatially identifiable domains of an
 organic/inorganic, insulating/metal, insulating/semicon, etc.
 component, in which at least one dimension of at least one
 component is in the nanometer size scale (< 100 nm)

Nanocomposite

Profili, J. et al. JAP 120 5 (2016); 053302

PROMES

Sommaire

- I- Dépôt de couches minces nanostructurées par PECVD à pression atmosphérique ?
 - 1. Principe de la PECVCD
 - 2. Nanostructuration
 - 3. Composites
- II- Dépôt de composites par PECVD à PA
 - 1. Deux précurseurs
 - 2. Nanoparticules comme précurseur
 - 3. Procédé en une étape
- III- Physique des décharges hors équilibre à la pression atmosphérique
 - 1. Comment la décharge s'amorce lorsque Pxd est élevé?
 - 2. Comment éviter la transition à l'arc?
 - 3. Quelles sont les caractéristiques des micro-décharges ?
 - 4. Décharges homogènes à la pression atmosphérique
 - 5. Comparaison des différentes DBD
- IV- Design de la forme d'onde de la tension qui génère le plasma pour contrôler les nanocomposites

Plasma froid à pression atmosphérique: où est le Pb? P_{atm} = haute pression pour un plasma

- La fréquence de collision augmente avec n_g
- Le libre parcours moyens, λ, des espèces diminue :

Electrons: $\lambda_e \approx 500$ nm

⇒ Gap: des millimètres ou plus

⇒ ionisation très rapide et localisée du gaz

⇒ électrons se thermalisent, chauffent le gaz

⇒ arc électrique

Pour générer un plasma froid à la pression atmosphérique il faut bloquer le développement de la décharge.

- Plasma froid : $n_e/n_g < 10^{-4}$
- Pression atmosphérique: n_{gaz}≈2,510¹⁹/cm³

Introduction

Caractéristiques électroniques

Plasma froid si N/ne < 10⁴

 P_{atm} : N=2,6 10¹⁹/cm³ \rightarrow ne < 10¹⁵/cm³

Physique des décharges à P_{atm}

La pression atmosphérique est un point clef pour les applications pas pour la physique des décharges

Plasma à la pression atmosphérique

Produit (Distance interélectrode X Pression)

Distance cathode anode= gap
> mm

Libre parcours moyen des électrons < um

Nombre de collisions électroniques: ionisation en volume

Rapport entre la création des électrons en surface / volume ionisation γ (Ion + cathode \rightarrow e) / ionisation α (e+A \rightarrow A+ 2e)

Physique des décharges hors équilibre à la pression atmosphérique

Rupture du gaz pour de forts produits Pxd?

- Observations
- Streamer
- de l'avalanche électronique à l'étincelle

Claquage du gaz Observations expérimentales

Spécificité de la physique des décharges froides à la pression atmosphérique

(Pression X Distance inter-électrodes) > 10^4 Pa.m, 10^{-1} Atm.cm (~100 Torr.cm) P α N α 1/ λ : d/ λ >>1

Observations

La décharge se développe en un temps très court (10ns)

→ avant que les ions aient pu atteindre la cathode

La dynamique de la décharge est indépendante du type de matériau formant la cathode Un canal lumineux s'établit après le développement de la première avalanche électronique

H. Raether, Electron avalanches and breakdown in gases, Butterworths, London 1964

Claquage du gaz

Spécificité de la physique des décharges froides à la pression atmosphérique

(Pression X Distance inter-électrodes) $> 10^{-1}$ Atm.cm (~100 Torr.cm)

P α N α 1/ λ : d/ λ >>1

Observations

→ avant que les ions aient pu atteindre la cathode

La dynamique de la décharge est indépendante du type de matériau formant la cathode Un canal lumineux s'établit après le développement de la première avalanche électronique

Incompatible avec un claquage de Townsend contrôlé par α et γ

La contribution de la surface est négligeable

Théorie du "streamer": Loeb, Meek et Raether dans les années 40

Loeb L. B. 1960, Basic Processes of Gazeous Electronics, Univ. of California Press Raether H 1964 Electron avalanches and Breakdown in Gases, Butterworth Meek J. .M and Craggs J. D., 1978, electrical Breakdown of Gases, Wiley

Comment la décharge s'amorce ? 1. Electron Primaire Anode Première étape: Création aléatoire d'un électron "primaire" $V/d=E_0$ Flux d'ionisation naturelle $10^{2} \text{ e/cm}^{3}.\text{s}$ Cathode PROMES

2. Avalanche Primaire

a: Coefficient attachement

a: Coefficient d'ionisation

Première étape:

Création aléatoire d'un électron "primaire"

Deuxième étape:

Développement d'une avalanche électronique à partir de l'électron "primaire"

 $E_0/N > (E/N)$ critique / a/N > a/N

Dans l'air: 28 kV/cm

Dans SF₆: 83 kV/cm

2. Avalanche Primaire

<u>Première étape</u>:

Création aléatoire d'un électron "primaire"

E₀ Rd

Rd e e

ee e ee e

е, е .е е, е .е

++ +

X

Cathode

Electrons: $V_d = \mu_e E_0$

Rd ≈

avec $\tau = x/V_d$

Deuxième étape:

Développement d'une avalanche électronique

 $E_0/N > (E/N)$ critique / α /N = α /N

Ne = exp[(
$$\alpha$$
 - a)x]
N+ = α /(α -a) (Ne-1) N- = a/(α -a) (Ne-1)

Ordres de grandeur

 $\mu_e P: 0.45_{(air)} \ a \ 1.5_{(Ne)} \ 10^6 cm^2 \ Torr/Vs$

 \rightarrow T_{amb}, P_{atm}: $\mu_e \approx 10^3$ cm²/Vs

 \rightarrow Si E₀=20kV/cm \rightarrow V_d=20.10⁶cm/s

 \rightarrow D_e: 10⁴ cm²/s

3. Naissance du streamer (ou dard)

Yu. P. Raizer (Gas Discharge Physics)

Fig. 12.1. Shape and charge distribution of an electron avalanche at two consecutive moments of time. Arrows indicate directions of external field E_0 and velocity of motion of the avalanche head,

Fig. 12.3. Electric fields in a gap containing an electron avalanche, (a) Lines of force of the external field E_0 and of the field of space charge of the avalanche, E', are shown separately. (b) lines of force of the resulting field $E = E_0 + E'$. Circles mark the centers of space charges

E': Champ de charge d'espace

Ne: Nombre d'électron

- •Si Ne est suffisamment élevée $E' \approx E_0$
- Distorsion du champ électrique local
- Modification de la propagation de l'avalanche

Troisième étape:

Naissance du streamer

3. Naissance du streamer

Fig. 12.3. Electric fields in a gap containing an electron avalanche. (a) Lines of force of the external field E_0 and of the field of space charge of the avalanche, E', are shown separately. (b) lines of force of the resulting field $E = E_0 + E'$. Circles mark the centers of space charges

Yu. P. Raizer (Gas Discharge Physics)

Formation du streamer si $E' \approx E_0$

E': Champ électrique dû à la charge d'espace dans l'avalanche primaire

Eo: Champ Laplacien ou géométrique Eo = V/d

Si on considère que les ions et les électrons sont 2 sphères de rayon R Le champ électrique à la surface s'écrit : E'=eNe/ $4\Pi\epsilon_0$ R² with Ne = exp[α x]

$$E_0 \approx E' = \frac{e}{4\pi\varepsilon_o r^2} \exp\left[\alpha \left(\frac{E_0}{P}\right) * x\right]$$

Critère de Meek

Comment la décharge s'amorce ?

3. Naissance du streamer

Fig. 12.3. Electric fields in a gap containing an electron avalanche. (a) Lines of force of the external field E_0 and of the field of space charge of the avalanche, E', are shown separately. (b) lines of force of the resulting field $E = E_0 + E'$. Circles mark the centers of space charges

Yu. P. Raizer (Gas Discharge Physics)

Quelle est l'ordre de grandeur du nombre de charges nécessaire pour avoir $E'=E_0$?

Ne >
$$10^8$$
, αx 18-20
Rd $\approx 200 \mu m$, $x \approx mm$

on considère que les ions et les électrons sont contenus dans 2 sphères de rayon R champ à la surface est : E'=eNe/4 $\Pi\epsilon_0$ R² avec Ne = exp[α ×]

$$R \approx R_d = \sqrt{4D_e t}$$

$$v_e = \mu_e E_0$$

$$D/\mu = kT/e = 2\varepsilon/3$$

$$R \approx R_d = \sqrt{4D_e t} = \sqrt{4\frac{De}{\mu e}\frac{x_0}{E_0}} = \sqrt{\frac{8\overline{\varepsilon}x_0}{3eE_0}}$$

<u>Cas de l'air</u>: pour un gap de 1cm, à P_{atm} , $E_c = E_0 = 31kV/cm$ avec = 3,6 eV

$$R_d = 180\mu$$

$$\rightarrow$$
 E'=E₀ pour Ne=0,8 10⁸ et α x=18

Comment la décharge s'amorce? 4. Propagation du streamer

Un streamer est un canal de décharge assez faiblement ionisé qui se propage très rapidement (v de l'ordre de 108cm/s) vers une, ou vers les 2 électrodes

Streamer dirigé vers l'anode

Avalanches secondaires

Rôle dominant des électrons

Fig. 12.6. Anode-directed streamer. (a) Photons and secondary avalanches in front of the streamer head at two consecutive moments of time. (b) Field in the vicinity of the head

Yu. P. Raizer (Gas Discharge Physics)

Le front d'ionisation se propage dans la même direction que les électrons En tête le champ est très fort: propagation rapide Les ions des avalanches secondaires forment un plasma avec les électrons du streamer

Comment la décharge s'amorce ? 4. Propagation du streamer

Streamer dirigé vers la cathode

 Le front d'ionisation et les électrons se propagent dans des directions opposées

Fig. 12.5. Cathode-directed streamer. (a) Streamer at two consecutive moments of time, with secondary avalanches moving towards the positive head of the streamer; wavy arrows are photons that generate seed electrons for avalanches. (b) Lines of force of the field near the streamer head

Yu. P. Raizer (Gas Discharge Physics)

- Rôle essentiel des photons qui par photo-ionisation ($hV_{N2}>Ei_{O2}$) ou photo-émission (cathode), créent les électrons germes à l'origine des avalanches secondaires
- Rôle des charges des avalanches secondaires:
 - Les électrons rejoignent la partie positive du streamer pour former un plasma
 - Les ions forment une nouvelle charge d'espace positive qui est plus près de la cathode → propagation du streamer vers la cathode

ETAPES:

* Avalanche initiale 0ns < T < 4ns

ETAPES:

- Avalanche initiale
- * Phase intermédiaire 4ns < T < 7ns

ETAPES:

- Avalanche initiale
- * Phase intermédiaire
- * Streamer positif 7ns < T < 14ns

ETAPES:

- Avalanche initiale
- * Phase intermédiaire
- Streamer positif
- * Gaine cathodique 14ns < T < 25ns

Comment la décharge s'amorce?

5. Après le streamer

Streamer:propagation d'une onde d'ionisation vers les surfaces (10mA, 10⁸cm/s) Fin du streamer lorsque les surfaces sont atteintes

Les 2 électrodes sont connectées par un plasma faiblement ionisé (≈10⁻⁵)

Le plasma de la micro-décharge est ambipolaire et la tension est appliquée au point de contact avec la cathode

Forte émission secondaire

Onde d'ionization de la cathode vers l'anode, Onde de retour (109cm/s)

Chauffage du gaz, étincelle (10⁴A/cm², 100V/cm)

Comment éviter la transition à l'arc? 5. Après le streamer

Stopper la décharge avant que le gaz soit chauffé

- Configuration des électrode (applicateur)
 - 1- Forme : Décharge couronne
 - 2- Conductivité: Décharge à Barrière Diélectrique
- Alimentation électrique:
 - 3- Tension impulsionnelle

Corona discharge

Décharge couronne: Une electrode « gap

- C'est une solution tant que la tension est assez faible...
- C'est une solution pour diminuer la tension de claquage

Comment éviter la transition à l'arc? Tension impulsionnelle répétitive

La transition du streamer à l'étincelle implique un échauffement du gaz qui nécessite environ 500ns

Impulsion de tension durée < 500ns

transition à arc évitée entre 2 électrodes métallique

Ne et Te augmentent

E. Marode, *The mechanism of spark breakdown in air at atmospheric pressure between a positive point and a plane. I. experimental : nature of the streamer track*, Journal of applied physics, **46** (5), **1975**

Décharge à barrière diélectrique

Diélectrique ...

Décharge transitoire auto-entretenue Pas de transition à l'arc

Plasma froid pour de forte valeur du produit Pxd

Décharge robuste

écharge à barrière diélectrique

DBD luminescente dans He : exemple de forme de la tension gaz

Cds charge

Vg diminue

la décharge s'éteind

Décharge à barrière diélectrique (DBD) - Configurations

Beaucoup de configurations possibles

Décharge à barrière diélectrique caractéristiques des microdécharges

Temps de pause: 20 ms

Vue de dessus

Photographies

Vue de coté

Courbes de Lissajous : énergie déposée

- Décharge localisée : 300μm de diamètre
- Décharge très courte : < 100ns
- •Ne=Ni≈10¹⁴/cm³
- •N = 210^{19} /cm³ :Taux d'ionisation $\approx 10^{-5}$
- •T_{gaz}: 200-400 K
- E_{électrons} : 1 à 10 eV

Décharge à barrière diélectrique caractéristiques des microdécharges

Temps caractéristiques

Décharge à barrière diélectrique chaque microdécharge est un micro réacteur

Species are diffusing accordingly to their life time

Décharge à barrière diélectrique chaque microdécharge est un micro réacteur

Micro-décharges <u>aléatoirement distribuées</u>

- : une solution pour réaliser une chimie à peu près homogène
 - Micro-décharge: 100ns
 - Taux de répétition de l'ordre de : 50μs (10kHz)
 - Temps de process: 1s (20 000 demie-période)

😊: Contrôle de l'énergie moyenne intégrée dans le temps et l'espace n'est pas toujours suffisant:

- Différentes chimies :
 - dans le canal de décharge et dans la zone de diffusion
 - dans des filaments d'énergie différente
 - aux endroits où la fréquence de répétition des décharges est

différente

Intérêt des décharges froides homogènes à la pression atmosphérique

Mecanismes qui aident à obtenir

un grand volume de plasma

quand le produit Pxd est élevé

Trois solutions:

- 1. Diminuer suffisamment la distance interélectrode pour que l'avalanche primaire ne puisse pas atteindre la taille critique (faible Pxd)
- 1. Couplage d'avalanches primaires : interactions conduisent à un plasma de grand volume.
- Claquage de Townsend : avant que le champ soit suffisant pour qu'une avalanche de grande dimension se forme → pas de streamer → pas de microdécharge

1ère solution : couplage des avalanches électroniques

Preionisation + HT : De nombreuses avalanches se développent en même temps
Si elles se recouvrent avant la transition au streamer, la décharge est homogène

Condition de recouvrement des avalanches ?

Quand les avalanches atteignent la taille critique (x_c), que N_{ec} =10⁸ : R_{dc} < a/2, a distance entre 2 $e_{primaires}$

Si N_{e0} est la densité de préionisation : $a = N_{e0}^{-1/3}$

 $Rdc \approx 100 \mu m$

 $N_{e0} \approx 10^6 / \text{cm}^3$

Continuous (sinusoidal)

Rise time: ~1 V / nsec Sinusoidal wave

Filament temperature: 350-450K

Microsecond-pulsed

Rise time: ~5 V / nsec Pulse duration: ~2 μsec

Filament temperature: 320-420K

Nanosecond-pulsed

Rise time: ~3,000 V / nsec Pulse duration: ~40 nsec

Rotational temperature: ~300K

Drexel Plasma Institute H. Ayan *et al*, J. Phys. D: Appl. Phys. **42** (2009) 125202

ISPC 19 Bochum July 30

2ème solution - Principe :

Obtenir un claquage du gaz pour un champ inférieur au champ de développement d'une avalanche de taille critique

⇒ obtenir un claquage de Townsend

Moyens:

- γ : Augmenter la contribution de l'émission d'électrons secondaires à la cathode avant et pendant le claquage
 - Augmenter le coefficient γ
- Favoriser le bombardement de la cathode par des espèces énergétiques: ions, états excités, photons
- α :Diminuer la vitesse d'ionisation dans le gaz afin que les ions puissent atteindre la cathode: exacerber l'ionisation via des mécanismes à plusieurs étapes comme l'ionisation Penning plutôt que l'ionisation directe par les électrons :

1)
$$e + A \rightarrow A^* + e$$

+
2) $A^* + B \rightarrow B^+ + e$
1) $e + B \rightarrow B^+ + 2e$

Si γ augmentent, da/dE lente et Vc faible \Longrightarrow claquage de Townsend

Comment augmenter l'émission d'électrons secondaires ?

Emission d'électrons à la cathode dépend:

- γ: Choix du matériau qui constitue la cathode
 - Oxyde : MgO
 - Isolant chargé négativement
 - Diélectrique sur chaque électrode:

Quand le diélectrique est sur l'anode il se charge en électrons. A l'alternance suivante l'électrode est la cathode et l'émission secondaire est exacerbée en début de décharge lorsque la décharge s'amorce.

- Flux de particules pouvant induire l'émission d'électrons secondaires : effet mémoire

Ralentir l'ionisation du gaz pour laisser le temps aux ions de dériver à la cathode: Ionisation en plusieurs étape : Ionisation Penning

Ex : décharge luminescente à la pression atmosphérique dans He/air

Comparaison de l'importance de l'ionisation directe et de l'ionisation Penning *Modèle fluide 1D* (P. Ségur)

Ionisation directe e + He => He⁺ + 2 e

Ionisation Penning e + He => He* He* + N_2 => N_2 + + e + He

Synthèse DBDs homogène

Objectif : 7 puissance de la DBD homogène

Différents régimes de décharges homogènes en Ar/NH₃ dans la même configuration :

					N
Régimes	GDBD TDBD		Transition	RF-DBD	NRP-DBD
Fréquence	50 et 200 kHz	270 et 520 kHz	800 kHz et 2,3 MHz	> 3 MHz	5 à 50 ns 1 à 30 kHz
Puissance	1 W/cm³	2 W/cm³	2 W/cm ³ 3 W/cm ³		17 W/cm ³
Amorçage	lons p		k parois des électrons	Electrons piégés	
	900	V		1 1 150V	2750V
	Électron seco	ndaire à la cathode		lonisation e	n volume
Ar (₃ P²)	10 ¹⁰ cm ⁻³			10 ⁸ cm ⁻³	
Electrons	10 ¹⁰ cm ⁻³			10 ¹² cm ⁻³	10 ¹³ cm ⁻³
43				2 populations électroniques	Electrons chauds

DBD's comparison

Density (cm ⁻³)	10 ⁷	10 ⁸	10 ⁹	10 ¹⁰	1011	1012	10 ¹³	1014	10 ¹⁵
Max Ne	Townsend			Glow		Glow like Glow RF		FDBD Nano- répétitive	
Carrier gas metastable	Town	send		Glo	OW				

- Les décharge luminescente (glow) ne fonctionnent que dans les mélanges Penning, les autres décharges fonctionnent dans l'air
- La densité d'électrons et leur énergie peut être varié sur une très grande plage en ne changeant que la forme de l'excitation

DBD's comparison

Density (cm ⁻³)	10 ⁷	10 ⁸	10 ⁹	10 ¹⁰	1011	1012	10 ¹³	1014	10 ¹⁵
Max Ne	Townsend			Glow		Glow like Glow RF		FDBD Nano- répétitive	
Carrier gas metasable	Towr	nsend		Gl	OW				

- ✓ Maximum ionization level is related to the current amplitude
- ✓ Maximum power also depends on the discharge duration

DBD homogènes	Townsend	Glow BF	Glow RF	Glow like	Nano- répétitive	VHF (150MHz)
Power W/cm ²	10	0,1	3	10	4	10

Sommaire

- I- Dépôt de couches minces nanostructurées par PECVD à pression atmosphérique ?
 - 1. Principe de la PECVCD
 - 2. Nanostructuration
 - 3. Composites
- II- Dépôt de composites par PECVD à PA
 - 1. Deux précurseurs
 - 2. Nanoparticules comme précurseur
 - 3. Procédé en une étape
- III- Physique des décharges hors équilibre à la pression atmosphérique
 - 1. Comment la décharge s'amorce lorsque Pxd est élevé?
 - 2. Comment éviter la transition à l'arc?
 - 3. Quelles sont les caractéristiques des micro-décharges ?
 - 4. Décharges homogènes à la pression atmosphérique
 - 5. Comparaison des différentes DBD

IV- Design de la forme d'onde de la tension qui génère le plasma pour contrôler les nanocomposites

Transport des NPs

Les particules se chargent sous l'effet des ions et des électrons

PROMES

La particule est soumise à différentes forces

Fg: gravité

Fi: vent ionique

Fth,I: thermophorèse

Fth, v: thermophorèse

F n,z: entraînement F n,x: entraînement

Fe: électrostatique

La force électrostatique est dominante pour des particules de diamètre entre 20nm et 1µm si la fréquence est inférieure à ≈1kHz

Influence de la fréquence

Modulation en fréquence du signal électrique

Modulation de fréquence et décharge

Analyse du dépôt obtenu

Tranche obtenue par FIB d'une structure micrométrique

Agglomérat

Particule isolée

Analyse MEB en tranche montrant l'inclusion d'une nanoparticule dans la matrice

Rugosité de surface créée par les structures: Rq = 30 -70 nm

Taille nanométrique des structures

 $(d=50 \ nm-250 \ nm)$

PROMES

Couche mince dense

Distribution homogène des structures

Effet de la fréquence sur la croissance de la matrice et le transport des NPs

Simulation of the effect of a 2kV/cm field oscillating at different frequencies on the trajectory of a 100nm radius TiO2 NPs in the gas flow

PROMES

Voltage waveform design: double modulation

The two frequencies can be successively applied as far as the deposited thickness during T_M is low compared to the NPs size : If the growth rate is 10nm/min in 5 ms less than 10⁻³nm is deposited << 25nm

4 parameters :

• T < t_R = 26ms \rightarrow

f < 38Hz

T = 5ms (f=200Hz)

• $f_M > 10 \text{ kHz}$

 $f_M = 15 \text{ kHz}$

• f_{NPs} < 10 kHz

 $f_{NPs} = 1 \text{ kHz}$

Duty cycle: T_M / T (%)

0, 20, 40, 80, 100

Experimental conditions

Voltage waveform design: double modulation

PROMES

AP-PECVD state of the art Aerosol assisted AP-PECVD

Droplet evaporation → NPs aggregation

Boissière et al, Adv Mater, 2010 Iskadar et al, Adv. Powd. Tchnol. 2003

→ Droplets size :

PROMES

- → mainly defined NPs aggregate sizes in the composite
 - → NPs functionalization : very restrictive
 - → Polar solvant

Couche d'inter-pénétration

Other solutions to introduce the NPs

Répulsion électrostatique

NPs sputtering

+

Spatial decomposition of the different step of the process

First step: Is target sputtering feasible at atmospheric pressure?

- ✓ New atmospheric pressure plasma source to enhance target ion bombardment → Laser scattering shows NPs sputtering
- ✓ Modelling shows that NPs can be transported by the gas flow

P_{atm}: présence d'ion mais avec <u>très peu d'énergie (< 1 eV)</u>

Peu d'effet sur les couches minces

- RF-DBD : Electrons et ions piégés

 densité importante
- Polarisation BF : contrôle le flux d'ions aux parois

<u>Tension appliquée</u> = V_{RF} - V_{BF}

$$(f_{RF} = 5 \text{ MHz V}_{RF} = 400 \text{ V}, f_{BF} = 100 \text{ kHz V}_{BF} = 300 \text{ V})$$

Tension RF modulée par la tension BF

Double fréquence → modulation de la RF-DBD

Effet de V_{BF} à 50 kHz avec f_{BF} à 5 MHz (V_{rf} = 300 V) : Intensité normalisée raie d'argon (696 nm)

Lumière de la décharge en fonction du temps à l'échelle de la BF

RF (5MHz) + BF (50 kHz 250V)

Extraction des ions au maximum de V_{BF}

- Tend vers l'extinction

Effet de V_{BF} à 50 kHz avec f_{BF} à 5 MHz (V_{rf} = 300 V) : Intensité normalisée raie d'argon (696 nm)

Lumière de la décharge en fonction du temps à l'échelle de la BF

Extraction des ions au maximum de V_{BF}

- Tend vers l'extinction
- ¬ tension amorçage RF-DBD

Amplification

Thèse Remy Bazinette, PROMES

Au maximum de V_{BF} (alternance négative)

Raie d'argon à 750 nm dans le temps et l'espace à l'échelle de la RF

RF seul (5MHz) RF (5MHz) + BF (50 kHz 250V) RF (5MHz) + BF (50 kHz 500V) Extinction de la décharge Amplification de la décharge anode cathode anode 900 anode cathode anode anode cathode anode 2 mm -300 -600 Tension 0 mm -900 alpha 3.85 3.90 3.95 4.00 4.05 3.85 3.90 3.95 4.00 4.05 3.75 3.80 3.85 3.90 3.95 3.80 Temps (µs) Temps (µs) Temps (µs) Mode alpha avec **↗** Mode alpha Mode gamma et alpha émission secondaire

Dissymétrisation de la RF

« 2 cathodes du même coté » : $V_{RF} + V_{BF} \rightarrow \mathbb{Z}$ champ électrique vue par les ions

Sputtering of a target of NPs?

PROMES

Double frequency discharge to optimize the ion flux on the target

Sputtering of a target of NPs?

Laser scattering by NPs in the plasma as a function of the voltages amplitude and frequency

Conditions:

Gap: 2 mm

Ar flow: 2 I/min

[NH₃]: 280 ppm

RF frequency: 5 MHz

LF frequency: 1 – 100 kHz

RF voltage: 300 – 650 V

LF voltage: 300 V

When the flux of ions to the surface is high enough scattering is observed

Sputtering of a target of NPs?

Modeling of the NPs transport to optimize the plasma configuration the gas flow and the voltage

V. Pulvérisation d'une cible à la pression atmosphérique

Méthode

Porte substrat

Flux de gaz

Plasma basse fréquence

Plasma radio fréquence

Plasma double fréquence

Conclusion

- Il est possible de faire des couches minces nanocomposites par plasma à pression a pression atmosphérique
- Des voies pour contrôler la morphologie apparaissent
- Parmi les verrous:
 - l'agrégation des NPs qui ne peut pas être solutionnée sans forte collaboration avec la communauté des aérosols

