

Toulouse Midi-Pyrénées

Session : Formation de nano-objets par plasma

Laplace

Synthèse de nanoparticules par arc électrique

Flavien Valensi

Journées du Réseau Plasma Froid – 17 au 20 octobre 2016

La Rochelle, France

UPS 118, route de Narbonne, 31062 Toulouse cedex 9, France

Laplace

Plan de la présentation

Introduction

1- Nanoparticules carbonées

- 1.1 Principe de la synthèse
- 1.2 Dispositifs et diagnostics
- 1.3 Exemples de résultats

2- Nanoparticules métalliques

- 2.1 Techniques de synthèse
- 2.2 Diagnostics
- 2.3 Exemples de résultats

3- Nanoparticules « céramiques »

UPS 118, route de Narbonne, 31062 Toulouse cedex 9, France

Laboratoire Plasma et Conversion d'Énergie 1. Nanoparticules carbonées 1.1Principe Cathode Anode Gaz inerte Arc électrique entre deux électrodes en graphite Ablation de l'anode (vaporisation)

- Condensation : croissance des nanoparticules
- Dépôt des nanoparticules

ou moins présents selon les sites de dépôt →Optimisation de la synthèse pour un site donné

1.1.2 Paramètres de synthèse

Le gaz Gaz inerte : He, Ar Autres gaz : N₂, H₂, Air... Pression réduite : 0,1 à 1 bar Le volume et la configuration du réacteur (refroidis ou non...) Le courant d'arc : 40 à 100 A

Les électrodes :

Composition Structure Position

Catalyseurs : **Ni, Y**, Co, Fe Dopants : **B**, **N**, P, S

Laboratoire Plasma et Conversion d'Énergie Les électrodes Composition : graphite (C) + catalyseurs + dopants Homogènes Configuration horizontale ou Cathode Anode verticale Anode Cathode Cathode Hétérogènes Anode Anode Cathode **UPS** 118, route de Narbonne, 31062 Toulouse cedex 9, France

- 1.1.3 Mécanismes de croissance
 - Vaporisation
 arc: T > 3000° C
 - Refroidissement zone de croissance
 1000° C < T < 1300° C

→ condensation et croissance des structures graphéniques

* Y. Saito, M. Okuda, M. Tomita et T. Hayashi : Chem. Phys. Lett., 236, 419 (1995).

1.1.4 Optimisation de la synthèse

Etude de l'influence des paramètres (courant, gaz, catalyseurs...) sur la morphologie des produits obtenus

Corrélation avec les propriétés du plasma et de la zone de croissance

1.2.2 Diagnostic du plasma

Température d'excitation T_{exc} : Méthode du graphe de Boltzmann \rightarrow Raies du nickel atomique Ni I

Température des particules « lourdes » Spectroscopie moléculaire \rightarrow Bande de Swan (C₂)

Densité d'espèces [C₂], [Ni]...

→ Intensité absolue des raies

Rapport de concentration d'espèces

Comparaison de T_{exc} et T_h : écarts à l'ETL

1.2.3 Température du gaz

Mesure par thermocouples Type K : T jusqu'à 1300 ° C → Limite de la zone de croissance

Evolution de la température en fonction du temps

Mesure en plusieurs points : étude des gradients de température

1.3 Exemples de résultats1.3.1 Fullerènes

Conditions optimales de synthèse :

Anode : graphite, Gaz : hélium, p = 13 kPa, I = 75 A Distance inter-électrodes : 1 mm

Formation : Dépôt Cathodique, suies

1.3.2 Nanotubes de carbone monoparoi

Cathode

Conditions optimales de synthèse Anode : graphite + 0,6%Ni + 0,6%Y Gaz : hélium, p = 60 kPa, I = 80 A, Distance inter-électrodes : 1 mm

Collerette

Anode

Température de l'arc

Anode hétérogène : granulométrie ϕ de 1 ou 100 µm Volume de l'enceinte : 60 L ou 25 L

<u>Condition favorable</u> (V = 25 L et ϕ = 1 µm) : température plus élevée (1000 K)

Ramarozatovo, V ; Mansour, A ; Razafinimanana, M ; Monthioux, M ; Valensi, F ; Noe, L ; Masquere, M (2012) *Journal of Physics D-Applied Physics* **45** (34)

1.3.3 Nanotubes de carbone double-paroi

Conditions optimales de synthèse Anode : graphite + 0,6%Ni + 0,6% Co Gaz : hélium, p = 60 kPa, V = 25 L I = 80 A, Distance inter-électrodes : 1 mm

1.3.4 Nanotubes de carbone multiparois

Conditions optimales de synthèse Anode : graphite (+ 0,6%Ni + 0,6%Y) Gaz : hélium, p = 60 kPa, V = 25 L I = 80 A, Distance inter-électrodes : 1 mm

1.3.5 Nanotubes hétérogènes

Substitution

Nanotube de carbone

BN-Nanotubes

 Manque de sélectivité
 Limitation dans les applications électroniques

C-Nanotubes (graphène) gap ~ **0-1eV**

BN-Nanotubes: gap ~ 6eV

Propriétés électroniques entièrement déterminées par la Chimie, <u>non pas par la</u> <u>géométrie ,</u>

Conditions optimales de synthèse

Substitution à l'azote (CN) Anode : graphite + 0,6%Ni + 0,6%Y, Gaz : $50\%_{vol.}$ He + $50\%_{vol.}$ N₂, p = 60 kPa, I = 80 A, Distance inter-électrodes : 1 mm Substitution au bore (CB)

Anode : graphite + 0,6%Ni + 1,2%Y + 4% B

```
Gaz : He, p = 60 kPa,
I = 80 A,
```

Distance inter-électrodes :

1 mm

1.3.6 Graphène (substitué au bore)

Conditions optimales de synthèse Anode : graphite + 0,6%Ni + 0,6%Y + 4%B Gaz : hélium + $10\%_{vol.}N_2$, p = 60 kPa, V = 25 L I = 80 A,

Distance inter-électrodes : 1 mm

118, route de Narbonne, 31062 Toulouse cedex 9, France

 \rightarrow formation du graphène

Température de formation plus faible

2. Nanoparticules métalliques

2.1 Synthèse :

Arc entre des électrodes métalliques consommables :

- Fil (méthode du « fil explosé »)
- Granulés
- → Courant continu ou pulsé (de quelques centaines d'ampères à plusieurs dizaines de kA ; durée < 1 ms)</p>
- \rightarrow Milieu non oxydant : gaz neutre ou liquide

2.1.2 Procédés continus ou répétitifs

Courant continu : I < 1A Courant pulsé : I_{max} = 150 A à 1,5 kA, T = 100 µs, f = 100 Hz

Métaux : Ag, Al, Cu, Mn... Granulés : 5 mm à 1 cm

K. Lopatko, Y. Aftandiliants, A. Veklich, V. Boretskij, N. Taran, L. Batsmanova, V. Trach, T. Tugai *Problems of Atomic Science and Technology.* 2015, № 1. Series: Plasma Physics (21), p. 267-270

UPS 118, route de Narbonne, 31062 Toulouse cedex 9, France

2.2 Etude du plasma

Observation par imagerie rapide :

- Etude de l'érosion
- Visualisation qualitative de la répartition des éléments présents dans le plasma

Spectroscopie du plasma :

- Détection qualitative des éléments présents
- Détermination de la température
- Détermination de la densité électronique

Densité électronique : utilisation de la raie H α

3. Nanoparticules « Céramiques »

Synthèse de particules de nitrure de bore BN à l'échelle nanométrique:

- Nanopoudres
- Nanotubes

3.1 Nanopoudres BN

Conditions de synthèse Anode : graphite 0,6%Ni + 1,2%Y 4% B Gaz : hélium, p = 60 kPaV = 25 LI = 50 A, Distance inter-électrodes : 1 mm

Taille des particules < 5 nm

Nanotubes

Synthèse :

Anode : tube de tungstène remplis de nitrure de bore Cathode : disque en cuivre refroidis

Structure : h-BN

H. M. Ghassemi and R. S. Yassar, *Appl. Mech. Rev* 63(2), 020804 (Feb 24, 2010) (7 pages)

40 < I < 140 A p atm.

UPS 118, route de Narbonne, 31062 Toulouse cedex 9, France

Merci de votre attention